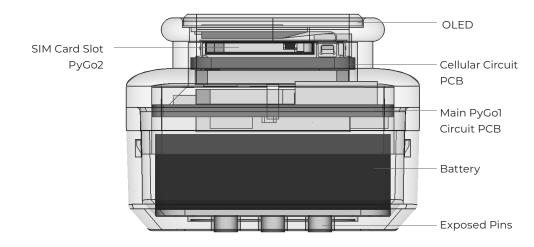
# **F**ypygo

Datasheet Version 1.0

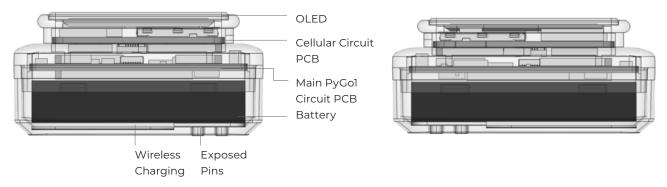


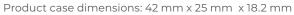
| 1.0                                                                               | Overview                                                                                                                                                                                                                 | 04                                                             |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2.0                                                                               | Features                                                                                                                                                                                                                 | 04                                                             |
| 3.0                                                                               | Specifications                                                                                                                                                                                                           | 04                                                             |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9<br>3.10<br><b>4.0</b> | CPU<br>Memory<br>WiFi<br>Bluetooth<br>LoRa<br>Sigfox<br>LTE CAT-M1/NB-IoT<br>RTC<br>Security<br>Hash / encryption<br>Block Diagram                                                                                       | 04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>05 |
| 5.0                                                                               | Pinout                                                                                                                                                                                                                   | 05                                                             |
| 6.0                                                                               | Programming the device                                                                                                                                                                                                   | 06                                                             |
| 6.1<br>6.2<br>6.2.1<br>6.2.2                                                      | UART<br>Wi–Fi<br>Telnet<br>FTP                                                                                                                                                                                           | 06<br>06<br>06<br>06                                           |
| 7.0                                                                               | Battery                                                                                                                                                                                                                  | 06                                                             |
| 8.0                                                                               | Power                                                                                                                                                                                                                    | 07                                                             |
| 8.1                                                                               | Current consumption by power<br>modes/features measured at 5V                                                                                                                                                            | 07                                                             |
| 9.0                                                                               | Memory Map                                                                                                                                                                                                               | 08                                                             |
| 9.1<br>9.2<br>9.3                                                                 | Flash<br>RAM<br>ROM and eFuses                                                                                                                                                                                           | 08<br>08<br>08                                                 |
| 10.0                                                                              | WiFi                                                                                                                                                                                                                     | 09                                                             |
| 10.1<br>10.2                                                                      | Supported features<br>Specifications                                                                                                                                                                                     | 09<br>09                                                       |
| 11.0                                                                              | Bluetooth                                                                                                                                                                                                                | 10                                                             |
| 11.1<br>11.2.1<br>11.2.2<br>11.2.3<br>11.2.4<br>11.2.5<br>11.2.6                  | Supported hardware features<br>Receiver – Basic Data Rate<br>Receiver – Enhanced Data Rate<br>Receiver – Bluetooth LE<br>Transmitter – Basic Data Rate<br>Transmitter – Enhanced Data Rate<br>Transmitter – Bluetooth LE | 10<br>10<br>11<br>12<br>13<br>14<br>15                         |
| 12.0                                                                              | LoRa                                                                                                                                                                                                                     | 15                                                             |
| 12.1<br>12.2                                                                      | Supported features<br>Specifications                                                                                                                                                                                     | 15<br>16                                                       |
| 1.J.U                                                                             | Sigfox                                                                                                                                                                                                                   | 17                                                             |

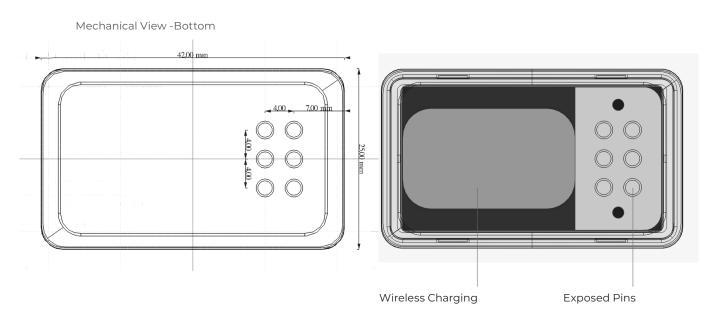
## 13.0 Sigfox


| 14.0         | LTE CAT-M1/NB-IoT                                               | 18       |
|--------------|-----------------------------------------------------------------|----------|
| 14.1         | Supported features                                              | 18       |
| 14.2<br>14.3 | Specifications<br>Supported LTE bands                           | 18       |
| 14.4         | SIM Card requirements                                           | 18       |
| 15.0         | GNSS receiver                                                   | 19       |
| 15.1         | Support Satellite Systems                                       | 19       |
| 15.2<br>15.3 | Position Accuracy<br>Time-To-First-Fix                          | 19<br>19 |
| 15.4         | Sensitivity                                                     | 19       |
| 16.0         | Accelerometer & Gyroscope                                       |          |
|              | Circuit                                                         | 20       |
| 16.1         | Integrated sensor                                               | 20       |
| 16.2         | Connectivity                                                    | 20       |
| 16.3         | IMU functionalities                                             | 20       |
| 17.0         | Pymesh                                                          | 20       |
| 18.0         | Electrical Characteristics                                      | 21       |
| 18.1         | Absolute maximum ratings                                        | 21       |
| 18.2<br>18.3 | Recommended Operating Condition<br>Input/Output characteristics | 21<br>21 |
| 18.4         | Wireless Charger                                                | 22       |
| 19.0         | Mechanical Specifications                                       | 22       |
| 20.0         | Integrations                                                    | 23       |
| 21.0         | Accessories                                                     | 23       |
| 22.0         | Ordering Information                                            | 23       |
| 23.0         | Packaging                                                       | 24       |
| 24.0         | Certification                                                   | 24       |
| 24.1<br>24.2 | EU Regulatory Conformance<br>Federal Communication Commission   | 24       |
| ∠4.∠         | Interference Statement                                          | 24       |
| 24.2.1       | RF Warning Statement                                            | 24       |
| 25.0         | Manual Information to the                                       |          |
|              | End User                                                        | 24       |
| 26.0         | Revision History                                                | 25       |







Mechanical View -Sides



Mechanical View -Sides







## **F**ypygo



## 1.0 Overview

With Sigfox, LoRa, WiFi, BLE and cellular LTE–CAT M1/ NB1, the PyGo is the latest Pycom MicroPython enabled device on the market today – the perfect enterprise grade IoT platform for your connected Things. Create and connect your things everywhere. Fast.

## 2.0 Features

- Powerful CPU
- MicroPython enabled
- Multi-GNSS receiver for GPS, GLONASS, SBAS and QZSS
- Ultra-low power usage
- Accelerometer & Gyroscope
- PYGO1 four networks: WiFi, BLE, LoRa, Sigfox
- PYGO2 five networks: WiFi, BLE, cellular LTE - CATI M1/NB1 LoRa and Sigfox

## 3.0 Specifications

### 3.1 CPU

- ESP32
- Xtensa® dual-core 32-bit LX6 microprocessor(s), up to 600 DMIPS
- Hardware floating point
- Python multi-threading
- An extra ULP-coprocessor that can monitor GPIOs, the ADC channels and control most of the internal peripherals during deepsleepmode while only consuming 25uA.

#### 3.2 Memory

- RAM: 520KB + 8MB
- External flash: 8MB
- 3.3 WiFi
  - 802.11b/g/n 150mbps

#### 3.4 Bluetooth

- Low energy
- Classic (not supported in the firmware)
- 3.5 LoRa
  - LoRaWAN stack Class A and C devices
  - Node range: Up to 10km Rural areas and up to 3km Urban areas (depending on conditions
  - 868 MHz (Europe) at +14dBm maximum
  - 915 MHz (North and South America, Australia and New Zealand) at +20dBm maximum

#### 3.6 Sigfox

- Class 0 device. Maximum Tx power:
   +14dBm(Europe)
   +20dBm (America)
   +20dBm (Australia and New Zealand)
  - Node range: Not tested

#### 3.7 LTE CAT-M1/NB-IoT (PyGo 2 only)

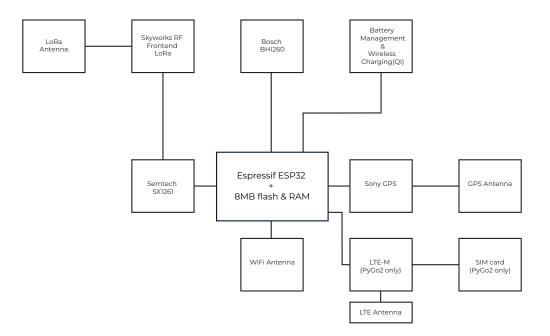
- One single chip for both CAT M1 and NB1
- LTE Cat M1 +23 dBm
- NB-IoT (NB1) +23 dBm
- Nano SIM push pull holder
- 3GPP release 13 compliant
- 3GPP Rel. 13 eDRX and PSM modes
- PSM current: dormant window configurable
- OTA firmware upgrade
- Power Consumption
- Hibernation current: 1.5 uA (avg)
- eDRX current: <45 uA (avg) @ 8 Hyperframes</li>
- PSM current: dormant window configurable
- Regulatory certificate:
   FCC/IC: HSW-TYISC
   ETSI: EN 301 489-1 and EN 301 908-1
   TELEC: 003-180242
   Carrier Certifications: PTCRB (5.38), GCF (3.73)

#### 3.8 RTC

– Running at 32KHz

#### 3.9 Security

- SSL/TLS support
- WPA Enterprise security


#### 3.10 Hash / encryption

- SHA
- MD5
- DES
- AES





## 4.0 Block Diagram



## 5.0 Pinout

| Pin Number | Pin Name | Туре         | Description                                                 |
|------------|----------|--------------|-------------------------------------------------------------|
| 1          | GND      | Power ground | Ground connection                                           |
| 2          | Pl       | GPIO         | GPIO21 of ESP32                                             |
| 3          | SDA      | I2C Data     | I2C communications bus, 10K ohm<br>pullup resistor in Pygo1 |
| 4          | VCC      | Power        | Power connection +5V (Vmin +3.5<br>and Vmax +5.5 Volts)     |
| 5          | PO       | GPIO         | GPIO25 of ESP32                                             |
| 6          | SCL      | I2C Clock    | I2C communications bus, 10K ohm<br>pullup resistor in Pygo1 |





## 6.0 Programming the device

- 6.1 Via the Pylife Mobile Application
- 6.2 UART (to be configured / activated via Mobile Application)By default, the modules run an interactive python

REPL on UARTO which is connected to PO (RX) and P1 (TX) running at 115200 baud. The easiest way to connect to the PYGO is via our PYGO charger, but any USB UART adapter will suffice. Code can be run via this interactive REPL or you can use our PyMakr plugin for Atom or Visual Studio Code to upload code to the board.

6.3 Wi-Fi (to be configured / activated via Mobile Application)
PyGo can also acts as a Wi-Fi access point SSID: pygo-wlan-XXXX
Password: www.pycom.io
Once connected to the PyGo's Wi-Fi network you can access it in two ways

## 7.0 Battery

Lithium Polymer Battery Pack LP632036 420mAh 3.7V with Protection Circuit Module (PCM)

Table 1 – Electrical Specification

6.3.1 Telnet (to be configured / activated via Mobile Application)
Running on port 23 is a telnet server. This acts in
a very similar way to the UART. It presents you with
an interactive REPL and can also be used to upload
code via PyMakr.
6.3.2 FTP (to be configured / activated via Mobile
Application)

The PyGo also runs an FTP server that allows you to copy files to and from the device, include an SD card if one is connected. To connect to this FTP server, you need to use plain FTP (un-encrypted) with the following credentials: User: micro Password: python

| Rated Capacity                           | 420mAh min, 430mAh typ. |
|------------------------------------------|-------------------------|
| Nominal Voltage                          | 3.7V                    |
| Wat-Hour Rating                          | 1.554Wh                 |
| Max. Operating Voltage Range             | 2.75V to 4.20V          |
| Max. Charge Voltage                      | 4.2V ±50mV              |
| Max. Charge Current                      | 210mA                   |
| Max. Continuous Discharge Current        | 420mA                   |
| Discharge Cut Off                        | 2.75V                   |
| Internal Impedance                       | <200mΩ                  |
| Expected Cycle Life @ (0.5C/0.5C) @ 23±5 | 500 cycles ≥ 80%        |

Important Note: The performance of all batteries drops drastically at low temperatures; however, the elevated internal resistance will cause some warming effect by efficiency loss caused by voltage drop when applying a load current. At –20°C (–4°F) most batteries will perform at about 50% of maximum performance level.





#### 8.0 Power

The PYGO features an on-board voltage regulator that takes 3.5V – 5.5V from the VIN pin and regulates it to 3.3V. It is important to only use the 3.3V as an output and not try to feed 3.3V into this pin as this could damage the regulator.

#### 8.1 Current consumption by power modes/features measured at 5V

Table 2 – Current consumption by power modes/features measured at 4.2V

| Mode                | Min | Avg.   | Max | Units |
|---------------------|-----|--------|-----|-------|
| Idle (no radios)    | -   | 62.7   | -   | mA    |
| LoRa Transmit*      | -   | -      | 290 | mA    |
| Sigfox Transmit†    | -   | 192    | -   | mA    |
| LTE Transmit        | -   | TBD    | -   | mA    |
| WiFi AP             | -   | 126    | -   | mA    |
| WiFi client         | -   | 137    | -   | mA    |
| Bluetooth           | -   | 121    | -   | mA    |
| Deep sleep          | -   | 15uA** | -   | mA    |
| GPS acquisition     | -   | 16     | -   | mA    |
| GPS tracking (8-ch) | -   | 9      | -   | mA    |

\*More details can be found in section 14.2

\*\*Deep Sleep current is an estimation and may be updated upon

product release

† More details can be found in section 15.2



## 9.0 Memory Map

## 9.1 Flash

Table 3– Flash memory map

| Name            | Description                                              | Start address | Size     |
|-----------------|----------------------------------------------------------|---------------|----------|
| NVS             | Non-volatile RAM area. Used by the NVS API               | 0x9000        | 0x7000   |
| Firmware Slot 0 | First firmware slot. Factory firmware is flashed<br>here | 0x10000       | 0x180000 |
| OTA info        | Information about the current active firmware            | 0x190000      | 0x1000   |
| Firmware Slot 1 | Second firmware slot                                     | 0x1A0000      | 0x180000 |
| File system     | 504KB file system on devices with 4MB flash              | 0x380000      | 0x7F000  |
| Config          | Config area for LoRa, Sigfox and LTE                     | 0x3FF000      | 0x1000   |
| File system (2) | 4MB file system on devices with 8MB flash                | 0x400000      | 0x400000 |

### 9.2 RAM

## Table 4 – RAM memory map

| Name           | Description                                                                      | Size  |
|----------------|----------------------------------------------------------------------------------|-------|
| On-chip SRAM   | Internal RAM memory used by the 2 xtensa CPUs                                    | 520KB |
| Fast RTC RAM   | Fast RAM area accessible by the xtensa cores during boot and sleep modes         | -     |
| Slow RTC RAM   | Slow RAM area accessible by the Ultra–Low<br>Power Coprocessor during deep sleep | -     |
| External pSRAM | External QSPI RAM memory clocked @ 40MHz                                         | 8MB   |

#### 9.3 ROM and eFuses

## Table 5 – Miscellaneous memory

| Name        | Description                                                                                                                                                                              | Size  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| On-chip ROM | Contains core functions and boot code.                                                                                                                                                   | 448KB |
| eFuse       | 256 bits are used for the system (MAC address<br>and chip configuration) and the remaining 768<br>bits are reserved for customer applications,<br>including Flash–Encryption and Chip–ID | lkbit |





## 10.0 WiFi

#### 10.1 Supported features

- 802.11 b/g/n/e
- 802.11 n (2.4 GHz), up to 150 Mbps
- WMM-PS, UAPSD
- A-MPDU and A-MSDU aggregation
- Block ACK
- Fragmentation and defragmentation

#### 10.2 Specifications

- Automatic Beacon monitoring/scanning
- Wi-Fi Protected Access (WPA)/WPA2/WPA2-Enterprise/Wi-Fi Protected Setup (WPS)
- Infrastructure BSS Station mode/SoftAP mode

#### Table 6 – WiFi specifications

| Description                          | Min      | Тур.         | Max   | Unit |
|--------------------------------------|----------|--------------|-------|------|
| Input Frequency                      | 2412     | _            | 2484  | MHz  |
| Tx power Output power of PA for 72.2 | 12       | 13           | 14    | dBm  |
| Output power of PA for 11b mode      | 18.5     | 19.5         | 20.5  | dBm  |
|                                      | S        | ensitivity   |       |      |
| 11b, 1 Mbps                          | -        | -98          | _     | -    |
| 11b, 11 Mbps                         | -        | -88          | _     | -    |
| 11g, 6 Mbps                          | _        | -93          | _     | -    |
| 11g, 54 Mbps                         | -        | -75          | -     | dBm  |
| 11n, HT20, MCS0                      | _        | -93          | -     | dBm  |
| 11n, HT20, MCS7                      | _        | -73          | -     | dBm  |
| 11n HT40, MCS0                       | -        | -90          | -     | dBm  |
|                                      | Adjacent | channel reje | ction |      |
| 11g, 6 Mbps                          | _        | 27           | _     | dB   |
| 11g, 54 Mbps                         | _        | 13           | _     | dB   |
| 11n, HT20, MCS0                      | _        | 27           | _     | dB   |
| 11n, HT20, MCS7                      | _        | 12           | _     | dB   |
|                                      |          |              |       |      |



## 11.0 Bluetooth

- 11.1 Supported hardware features
  - Compliant with Bluetooth v4.2 BR/EDR and BLE specification
  - Class–1, class–2 and class–3 transmitter without external power amplifier
  - Enhanced power control
  - +12 dBm transmitting power
  - NZIF receiver with –94 dBm sensitivity
  - Adaptive Frequency Hopping (AFH)
  - Standard HCI based on SDIO/SPI/UART
  - High-speed UART HCl, up to 4 Mbps

- BT 4.2 controller and host stack
- Service Discover Protocol (SDP)
- General Access Profile (GAP)
- Security Manage Protocol (SMP)
- ATT/GATT
- HID
- All GATT-based profile supported
- SPP-like GATT-based profile
- BLE Beacon
- A2DP/AVRCP/SPP, HSP/HFP, RFCOMM

## 11.2.1 Receiver – Basic Data Rate

Table 7 – Receiver (basic data rate) specifications

| Parameter                         | Conditions         | Min | Тур. | Max | Unit |
|-----------------------------------|--------------------|-----|------|-----|------|
| Sensitivity @0.1% BER             |                    | -90 | -89  | -88 | dBm  |
| Maximum received signal @0.1% BER |                    | 0   | _    | _   | dBm  |
| Co–channel C/I                    |                    | 0   | +7   | _   | dB   |
|                                   | F = F0 + 1 MHz     | _   | _    | -6  | dB   |
|                                   | F = F0 – 1 MHz     | _   | _    | -6  | dB   |
|                                   | F = F0 + 2 MHz     | _   | _    | -25 | dB   |
| Adjacent channel selectivity C/I  | F = F0 – 2 MHz     | _   | _    | -33 | dB   |
|                                   | F = F0 + 3 MHz     | _   | _    | -25 | dB   |
|                                   | F = F0 – 3 MHz     | _   | _    | -45 | dB   |
|                                   | 30Mhz ~ 2000MHz    | -10 | _    | _   | dBm  |
| Out-of-band blocking performance  | 2000MHz ~ 2400MHz  | -27 | _    | _   | dBm  |
|                                   | 2500MHz ~ 3000MHz  | -27 | _    | _   | dBm  |
|                                   | 3000MHz ~ 12.5 GHz | -10 | _    | _   | dBm  |
| Intermodulation                   |                    | -36 | _    | _   | dBm  |

## 11.2.2 Receiver – Enhanced Data Rate

Table 8 – Receiver (enhanced data rate) specifications

| Parameter                            | Conditions     | Min       | Тур. | Max | Unit |
|--------------------------------------|----------------|-----------|------|-----|------|
|                                      |                | π/4 DQPSK |      |     |      |
| Sensitivity @0.1% BER                |                | -90       | -89  | -88 | dBm  |
| Maximum received signal @0.1%        | BER            | _         | 0    | _   | dBm  |
| Co-channel C/I                       |                | -         | 11   | _   | dB   |
|                                      | F = F0 + 1 MHz | _         | -7   | _   | dB   |
|                                      | F = F0 – 1 MHz | _         | -7   | _   | dB   |
| Adjacent channel selectivity C/I     | F = F0 + 2 MHz | _         | -25  | _   | dB   |
|                                      | F = F0 – 2 MHz | _         | -35  | _   | dB   |
|                                      | F = F0 + 3 MHz | _         | -25  | _   | dB   |
|                                      | F = F0 – 3 MHz | _         | -45  | _   | dB   |
|                                      | 8DPS           | 5K        |      |     |      |
| Sensitivity @0.1% BER                |                | -84       | -83  | -82 | dBm  |
| Maximum received signal<br>@0.1% BER |                | _         | -5   | _   | dBm  |
| C/I c-channel                        |                | _         | 18   | _   | dB   |
|                                      | F = F0 + 1 MHz | _         | 2    | _   | dB   |
|                                      | F = F0 – 1 MHz | _         | 2    | _   | dB   |
| Adjacent channel selectivity C/I     | F = F0 + 2 MHz | _         | -25  | _   | dB   |
|                                      | F = F0 – 2 MHz | _         | -25  | _   | dB   |
|                                      | F = F0 + 3 MHz | _         | -25  | _   | dB   |
|                                      | F = F0 – 3 MHz | _         | -38  | _   | dB   |



#### 11.2.3 Receiver – Bluetooth LE

Table 9 – Receiver (BLE) specifications

| Parameter                         | Conditions        | Min | Тур. | Max | Unit |
|-----------------------------------|-------------------|-----|------|-----|------|
| Sensitivity @30.8% PER            | _                 | -94 | -93  | -92 | dBm  |
| Maximum received signal @30.8% PE | R –               | 0   | _    | _   | dBm  |
| Co–channel C/I                    | _                 | _   | +10  | _   | dB   |
|                                   | F = FO + 1MHz     | -   | -5   | _   | dB   |
|                                   | F = FO – 1MHz     | _   | -5   | _   | dB   |
| Adjacent channel selectivity C/I  | F = FO + 2MHz     | _   | -25  | _   | dB   |
|                                   | F = FO – 2MHz     | _   | -35  | _   | dB   |
|                                   | F = FO + 3MHz     | _   | -25  | _   | dB   |
|                                   | F = FO – 3MHz     | _   | -45  | _   | dB   |
|                                   | 30MHz ~ 2000MHz   | -10 | _    | _   | dB   |
|                                   | 2000MHz ~ 2400MHz | -27 | _    | _   | dBm  |
| Out–of–band blocking performance  | 2500MHz ~ 3000MHz | -27 | _    | _   | dBm  |
|                                   | 3000MHz ~ 12.5GHZ | -10 | _    | _   | dBm  |
| Intermodulation                   | _                 | -36 | _    | _   | dBm  |



## 11.2.4 Transmitter – Basic Data Rate

Table 10 – Transmitter (basic data rate) specifications

| Parameter                         | Conditions      | Min   | Тур. | Max | Unit     |
|-----------------------------------|-----------------|-------|------|-----|----------|
| RF transmit power                 | _               | _     | 0    | _   | dBm      |
| Gain control step                 | _               | _     | 3    | _   | dBm      |
| RF power control range            | _               | -12   | _    | +9  | dBm      |
| +20 dB bandwidth                  | _               | _     | 0.9  | _   | MHz      |
|                                   | F = F0 ± 2 MHz  | _     | -47  | _   | dBm      |
| Adjacent channel transmit power   | F = F0 ± 3 MHz  | _     | -55  | _   | dBm      |
|                                   | F = F0 ± >3 MHz | _     | -60  | _   | dBm      |
| Δfl <sub>avg</sub>                |                 | _     | _    | 155 | KHz      |
| ∆f2 <sub>max</sub>                |                 | 133.7 |      |     | kHz      |
| $\Delta f2_{avg}/\Delta f1_{avg}$ |                 | _     | 0.92 | _   | _        |
| ICFT                              |                 | _     | -7   | _   | kHz      |
| Drift rate                        |                 | _     | 0.7  | _   | kHz/50µs |
| Drift (1 slot packet)             |                 | _     | 6    | _   | kHz      |
| Drift (5 slot packet)             |                 | _     | 6    | _   | kHz      |
|                                   |                 |       |      |     |          |

## 11.2.5 Transmitter – Enhanced Data Rate

Table 11 – Transmitter (enhanced data rate) specifications

| Parameter                     | Conditions     | Min | Тур.  | Max | Unit |
|-------------------------------|----------------|-----|-------|-----|------|
| RF transmit power             |                | _   | 0     | _   | dBm  |
| Gain control step             |                | _   | 3     | _   | dB   |
| RF power control range        |                | -12 | _     | +9  | dBm  |
| π/4 DQPSK max w0              |                | _   | -0.72 | _   | kHz  |
| π/4 DQPSK max wi              |                | _   | -6    | _   | kHz  |
| π/4 DQPSK max  wi + w0        |                | _   | -7.42 | _   | kHz  |
| 8DPSK max w0                  |                | _   | 0.7   | _   | kHz  |
| 8DPSK max wi                  |                | _   | -9.6  | _   | kHz  |
| 8DPSK max  wi + w0            |                |     | -10   |     | kHz  |
|                               | RMS DEVM       | _   | 4.28  | _   | %    |
| π/4 DQPSK modulation accuracy | 99% DEVM       | _   | 100   | _   | %    |
|                               | Peak DEVM      | _   | 13.3  | _   | %    |
|                               | RMS DEVM       | _   | 5.8   | _   | %    |
| 8 DPSK modulation accuracy    | 99% DEVM       | _   | 100   | _   | %    |
|                               | Peak DEVM      | _   | 14    | _   | %    |
|                               | F = F0 ± 1MHz  | _   | - 46  | _   | dBm  |
|                               | F = F0 ± 2MHz  | _   | -40   | _   | dBm  |
| In-band spurious emissions    | F = F0 ± 3MHz  | _   | -46   | _   | dBm  |
|                               | F = F0 ± >3MHz | _   | _     | -53 | dBm  |
| EDR differential phase coding |                | _   | 100   | _   | %    |



#### 11.2.6 Transmitter – Bluetooth LE

Table 12 – Transmitter (BLE) specifications

| Parameter                         | Conditions     | Min | Тур. | Max | Unit     |
|-----------------------------------|----------------|-----|------|-----|----------|
| RF transmit power                 |                | _   | 0    | _   | dBm      |
| Gain control step                 |                | _   | 3    | _   | dBm      |
| RF power control range            |                | -12 | _    | +9  | dBm      |
|                                   | F = F0 ± 2MHz  | _   | -52  | _   | dBm      |
| Adjacent channel transmit power   | F = F0 ± 3MHz  | _   | -58  | _   | dBm      |
|                                   | F = F0 ± >3MHz | _   | -60  | -   | dBm      |
| Δfl <sub>avg</sub>                |                | _   | _    | 265 | KHz      |
| Δf2 <sub>max</sub>                |                | 247 | _    | -   | KHz      |
| $\Delta f2_{avg}/\Delta f1_{avg}$ |                | _   | 0.92 | -   | _        |
| ICFT                              |                | _   | -10  | -   | KHz      |
| Drift rate                        |                | _   | 0.7  | _   | KHz/50µs |
| Drift                             |                | _   | 2    | _   | KHz      |
|                                   |                |     |      |     |          |

## 12.0 LoRa

### 12.1 Supported features

Table 15 – Supported LoRa features

|              |                 | LoRa Parameters  |                 |                      |                    |
|--------------|-----------------|------------------|-----------------|----------------------|--------------------|
| Part Number  | Frequency Range | Spreading factor | Bandwidth       | Effective<br>Bitrate | Sensitivity        |
| Semtech chip | 860-930MHz      | 5 – 12           | 7.8 –<br>500KHz | 0.018 – 62.6<br>kbps | –117 to<br>–148dBm |

The current micropython firmware supports LoRaWAN 1.0 acting as either a Class A or Class C node.



## 12.2 Specifications

Table 13 – LoRa modem performance

| Symbol                      | Description                | Conditions                                           | Min | Тур. | Max | Unit |
|-----------------------------|----------------------------|------------------------------------------------------|-----|------|-----|------|
|                             |                            | BW_L=10.4 kHz, SF=7                                  | -   | -134 | -   | dBm  |
|                             |                            | BW_L=10.4 kHz, SF=12                                 | -   | -148 | -   | dBm  |
|                             |                            | BW_L=125 kHz, SF=7                                   | -   | -124 | -   | dBm  |
| RXS_LB                      | Sensitivity LoRa           | BW_L=125 kHz, SF=12                                  | -   | -137 | -   | dBm  |
|                             |                            | BW_L=250 kHz, SF=7                                   | _   | -121 | _   | dBm  |
|                             |                            | BW_L=250 kHz, SF=12                                  | _   | -134 | _   | dBm  |
|                             |                            | BW_L=500 kHz, SF=7                                   | -   | -117 | -   | dBm  |
|                             |                            | BW_L=500 kHz, SF=12                                  | _   | -129 | -   | dBm  |
|                             |                            | SF=7                                                 | _   | 5    | _   | mA   |
| CCR_L                       | Co-channel-rejection       | SF=12                                                | _   | 19   | -   | mA   |
|                             |                            | Offset = ±1.5 x BW_L                                 | _   | _    | _   | dB   |
| ACR_L                       | Adjacent Channel rejection | BW_L=125kHz, SF=7                                    | _   | 60   | _   | dB   |
|                             |                            | BW_L=125kHz, SF=12                                   | _   | 72   | _   | dB   |
|                             |                            | BW_L=125kHz, SF=12                                   | _   | _    | _   | _    |
|                             |                            | Offset = ±1 MHz                                      | -   | 88   | -   | dB   |
| BI_L                        | Blocking Immunity          | Offset = ±2 MHz                                      | _   | 90   | _   | dB   |
|                             |                            | Offset = ±10 MHz                                     | _   | 99   | _   | dB   |
| 3rd order in<br>IIP3_L poin | put intercept<br>t         | Unwanted tones are 1<br>MHz and 1.96 MHz above<br>LO | _   | 5    | _   | dBm  |

## Table 14 – LoRa – LoRa power consumption

| Symbol | Description                    | Condition                      | Min | Тур. | Max | Unit |
|--------|--------------------------------|--------------------------------|-----|------|-----|------|
| IDDOFF | SLEEP mode                     | Lora transceiver in sleep mode | -   | 5    | -   | mA   |
| IDDFS  | Synthesizer mode               | DC-DC mode used                | -   | 7.1  | -   | mA   |
|        | Supply in Receive mode         | Lora 125 kHz                   | -   | 9.6  | -   | mA   |
| IDDRX  | with DC-DC Rx Boosted, Lora 12 | Rx Boosted, Lora 125 kHz       | -   | 10.3 | -   | mA   |
| IDDTX  | Supply in Transmit mode        | +20 dBm                        | -   | -    | 290 | mA   |

## 13.0 Sigfox

TBA





## 14.0 LTE CAT-M1/NB-IoT (PyGo2 only)

#### 14.1 Supported features

LTE universal modem supports (low-band and mid-band):

Low-band B5/B8/B12/B13/B14/B17/B18/B19/B20/ B26/B28 Mid-band B1/B2/B3/B4/B25

- 3GPP release 13 LTE Advanced Pro
- Supports narrowband LTE UE categories M1/NB1
- Integrated baseband, RF, RAM memory and power management

#### 14.2 Specifications

#### Table 15– Supported LTE modes

- Reduced TX power class option

- Extended DRX (eDRX) and PSM features for long sleep duration use cases
- Control via AT commands according to 3GPP TS27.005, 27.007 and customized AT commands
- IPv4/IPv6 stack with TCP and UDP protocol
- SSL/TLS

| Parameter |                                     | Min | Тур. | Max | Unit |
|-----------|-------------------------------------|-----|------|-----|------|
|           | LTE Cat M1 in 1.4 Mhz, HD-FDD – DL  | _   | 300  | _   | kbps |
| Data wata | LTE Cat M1 in 1.4 Mhz, HD-FDD – UP  | -   | 375  | -   | kbps |
| Data rate | LTE Cat NB1 in 200 kHz, HD-FDD – DL | _   | 40   | -   | kbps |
|           | LTE Cat NB1 in 200 kHz, HD-FDD – UL | _   | 55   | _   | kbps |

#### 14.3 Supported LTE bands

#### Table 16 – Supported LTE bands

| Bands                                             | TX Frequencies   | RX Frequencies   |
|---------------------------------------------------|------------------|------------------|
| Low Bands 5, 8, 12,<br>13, 17, 18, 19, 20, 26, 28 | 699 to 915 MHz   | 728 o 960 MHz    |
| Mid Bands 1, 2, 3, 4                              | 1710 to 1980 MHz | 1805 to 2170 MHz |

#### 14.4 SIM Card requirements

#### Table 17 – SIM card specifications

| Parameter      | Min. | Тур.     | Max | Unit |
|----------------|------|----------|-----|------|
| Form factor    | _    | Nano-SIM | _   | _    |
| Variant        | _    | USIM     | _   | _    |
| Supply Voltage | _    | 1.8      | _   | V    |



## 15.0 GNSS receiver

## 15.1 Support Satellite Systems

- GPS (L1 C/A)
- GLONASS (L10 F)
- QZSS (L1 C/A)
- SBAS (L1 C/A)

#### 15.2 Position Accuracy

| ltem  | GPS | GPS &<br>GLONASS | Unit | Remarks                     |
|-------|-----|------------------|------|-----------------------------|
| 2DRMS | 1.0 | 1.0              | m    | Signal strength is -130 dBm |

### 15.3 Time-To-First-Fix

| ltem       | GPS | GPS &<br>GLONASS | Unit | Remarks                     |
|------------|-----|------------------|------|-----------------------------|
| Cold Start | 35  | 35               | S    | Signal strength is -130 dBm |
| Hot Start  | 2   | 2                | S    |                             |

#### 15.4 Sensitivity

| ltem       | GPS  | GPS &<br>GLONASS | Unit | Remarks |
|------------|------|------------------|------|---------|
| Cold Start | -147 | -147             | dBm  |         |
| Hot Start  | -160 | -160             | dBm  |         |
| Tracking   | -161 | -161             | dBm  |         |



## 16.0 Accelerometer & Gyroscope

- 16.1 Integrated sensor (6-DoF IMU)
  - 16-bit 3-axis accelerometer
    - 16-bit 3-axis gyroscope

#### 16.2 Connectivity

- I2C up to 3.4MHz
   Current consumption Fuser2 (running CoreMark)
- Long Run mode (20 MHz) 950 μA
- Turbo mode (50 MHz) 2.8 mA
   Sensor fusion (Hub+IMU) operation (calculating game rotation vector)
- 800 Hz ODR
   100 Hz ODR
   1.0mA
- Stand by current 8 µA Sensor fusion performance
- Static accuracy (head., pitch, roll) 2, 2, 2 degrees
- Dynamic accuracy (head., pitch, roll)-7, 2, 2 degrees
- Calibration time < 1 second</li>
- Orientation stabilization time 0.2 second
- 16.3 IMU functionalities

The embedded IMU (Inertial Movement Unit), apart from accelerometer and gyroscope MEMS, has an embedded CPU core which can run advanced algorithms for detecting:

- step counter and step detector
- significant motion this means when user changed
- significantly position (approximately 5 steps were made)
- activity recognition: still, walking, running, on bicycle, in vehicle (still or moving) and tilting,
- glance and pickup,
- wrist tilt.

More features, like tapping the screen (and double- tap) could be added later, as firmware modules that will be executed by the integrated CPU core.

The most advanced feature is the Pedestrian Deadreckoning, what will be experimentally available. Over prolonged periods of time, the absolute location, from GPS, needs to be used for re-positioning on the map

## 17.0 Pymesh

Pymesh is the raw-LoRa mesh networking. It is based on the ported Thread protocol with different timeouts to accommodate the lowest data rate 586bps, for SF11, bandwidth 125kHz LoRa parameters. The maximum speed is 18.7kbps, setting SF7 and bandwidth to 500kHz.

All the LoRa RAW transmission settings can be configured (frequency, SF, bandwidth, coderate AES128bits key), and they all need to be the same for a single Pymesh network (otherwise nodes will not "understand" each-other). In the current firmware up to 16 hops are allowed (due to protocol), but we have an experimental increase to 32 hops.

We did tests with 30-50 nodes in a full-mesh (each node is in the radio range of the other node), and measurements shows up to 100 nodes in the same area. If nodes are more dispersed, up to 256 nodes is the maximum number of nodes. There are experimental topologies, that protocol-wise, allow for 1k nodes in the same mesh network.

Based on AES128bits, each node is authenticated in order to be accepted in the mesh. Additionally, all the traffic is encrypted using the same key, with the exception of the advertisement messages

## 18.0 Electrical Characteristics

18.1 Absolute maximum ratings

Table 18 – Absolute maximum ratings

| Parameter                  | Symbol           | Min  | Тур. | Max  | Unit   |
|----------------------------|------------------|------|------|------|--------|
| Supply Input Voltage       | Vcc              | +3.5 | -    | +5.5 | $\vee$ |
| Storage temperature        | T <sub>str</sub> | -40  | _    | +85  | °C     |
| Operating Temperature      | T <sub>opr</sub> | -40  | -    | +85  | °C     |
| Moisture Sensitivity Level | MSL              | _    | 1    | _    | _      |

## 18.2 Recommended Operating Condition

#### Table 19 – Recommended Operating Condition

| Parameter             | Symbol           | Min | Тур. | Max | Unit   |
|-----------------------|------------------|-----|------|-----|--------|
| Supply Input Voltage  | Vcc              | -   | +5   | -   | $\vee$ |
| Storage Temperature   | T <sub>str</sub> | -40 | _    | +85 | °C     |
| Operating Temperature | T <sub>orp</sub> | -40 | +25  | +85 | °C     |

## 18.3 Input/Output characteristics

#### Table 20- Input/Output characteristics

| Parameter                 | Symbol            | Min                   | Тур. | Max                   | Unit   |
|---------------------------|-------------------|-----------------------|------|-----------------------|--------|
| Input low voltage         | V <sub>IL</sub>   | -0.3                  | _    | 0.25×V <sub>3V3</sub> | $\vee$ |
| Input high voltage        | V <sub>IH</sub>   | 0.75×V <sub>3v3</sub> | _    | V <sub>3V3</sub> +0.3 | $\vee$ |
| Max Input sink current    | I <sub>sink</sub> | _                     | 6    | 12                    | mA     |
| Input leakage current     | I <sub>IL</sub>   | _                     | _    | 50                    | nA     |
| Input pin capacitance     | $C_{pin}$         | _                     | _    | 2                     | pF     |
| Output low voltage        | Vol               | 0.1×V <sub>3v3</sub>  | _    | _                     | $\vee$ |
| Output high voltage       | V <sub>OH</sub>   | 0.8×V <sub>3V3</sub>  | _    | _                     | $\vee$ |
| Max Output source current | SOURCE            | _                     | 6    | 12                    | mA     |



#### 18.4 Wireless Charger

- Qi compliant works with Apple wireless chargers
- Complies with the Qi v1.2 communication protocol
- Integrated Wireless Power Supply Receiver Solution -Optimized for 2.5-W Applications
- 93% Overall Peak AC-DC Efficiency
- Full Synchronous Rectifier
- Wireless Power Consortium (WPC) v1.2 Compliant Communication Control
- Output Voltage Conditioning
- Wireless Power Consortium (WPC) v1.2 Compliant (FOD Enabled) Highly Accurate Current Sense
- Dynamic Rectifier Control for Improved Load Transient Response
- Dynamic Efficiency Scaling for Optimized
   Performance Over Wide Range of Output Power
- Adaptive Communication Limit for Robust

## 19.0 Mechanical information

3D models for the following are available on our website (links to be inserted!):

- PyGol and PyGo 2 in case
- PyGol Board as Stand Alone
- PyGo2 add on Board

- Communication
- Low-power Dissipative Rectifier Overvoltage Clamp (VRECT-OVP = 15 V)
- Thermal Shutdown
   Multifunction NTC and Control Pin for
   Temperature Monitoring, Charge Complete and
   Fault Host Control

All trademarks are the property of their respective owners.

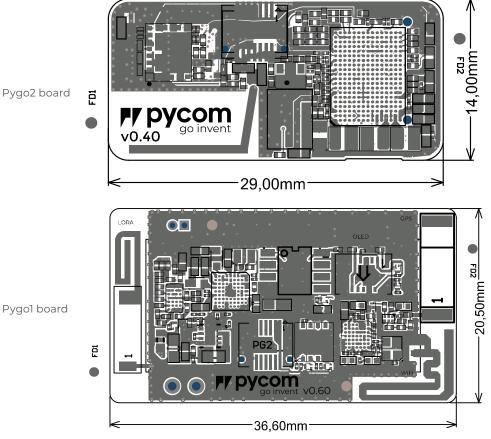



Figure 1 - Mechanical drawing (top view) - Units: mm





## 20.0 Integrations

20.1 OEM integrator condis TBA

- 20.2 Casing Requirement TBA
- 20.3 End product labelling TBA

## 21.0 Accessories

21.1 Charge Cradle

21.2 Carry Accessories

TBA

## 22.0 Ordering Information

Table 21 – Ordering information

| Product EAN | Description                                   | Notes |
|-------------|-----------------------------------------------|-------|
|             | PyGol in Case                                 |       |
|             | PyGo2 in Case                                 |       |
|             | PyGo Charge Cradle                            |       |
|             | PyGol Stand Alone<br>Board for integration    |       |
|             | PyGo1+2 Stand Alone<br>Boards for integration |       |

For more product accessories like expansion board or cases visit our website: http://www.pycom.io





## 23.0 Packaging

## 24.0 Certification

FLTE modem certificate:

- -FCC/IC: HSW-TYISC
- -ETSI: EN 301 489-1 and EN 301 908-1
- -TELEC: 003-180242

Carrier Certifications: PTCRB (5.38), GCF (3.73)

## **Regulatory Information**

#### 24.1 EU Regulatory Conformance

Hereby, Pycom Ltd declares that this device is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC

#### 24.2 Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

### 24.2.1 RF Warning Statement

To comply with FCC RF exposure compliance requirements, the antennas used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co–located or operating in conjunction with any other antenna or transmitter.

## 25.0 Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

In the user manual of the end product, the end user has to be informed that the equipment complies with FCC radio–frequency exposure guidelines set forth for an uncontrolled environment.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

The end user manual shall include all required regulatory information/warning as show in this manual.

The maximum operating ambient temperature of the equipment declared by the manufacturer is -20 - +85C

Receiver category 3





## 26.0 Revision History

Table 21 – Document revision history

Version 1.0

Initial Release: 12/8/20